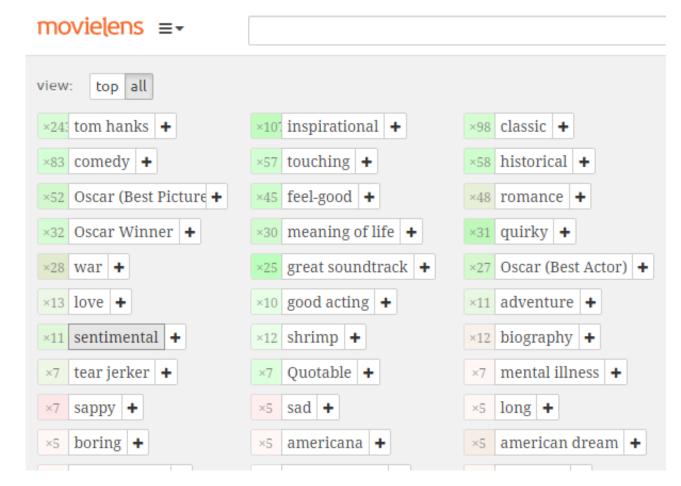


Social Tagging Data (Folksonomies)

- Users collaboratively generate "key words" for their interests.
- The "key words" form a taxonomy of resources online, called *Folksonomies* (Vander Wal, 2007).



Social tags for movie "Forrest Gump" in MovieLens https://movielens.org/movies/356

Issues in social tagging data

- (i) Noisy and ambiguous.
 - Data cleaning (Dong, Wang & Coenen, 2017).
- (ii) Plain structure, lack of semantic relations among tags.
 - This study focuses on <u>hierarchical/subsumption relations</u> between tags.
 - This is a challenging problem:
 - a cognitive task requiring much human effort (Weller, 2010, p. 139).
 - distinct from mining relations from sentences.

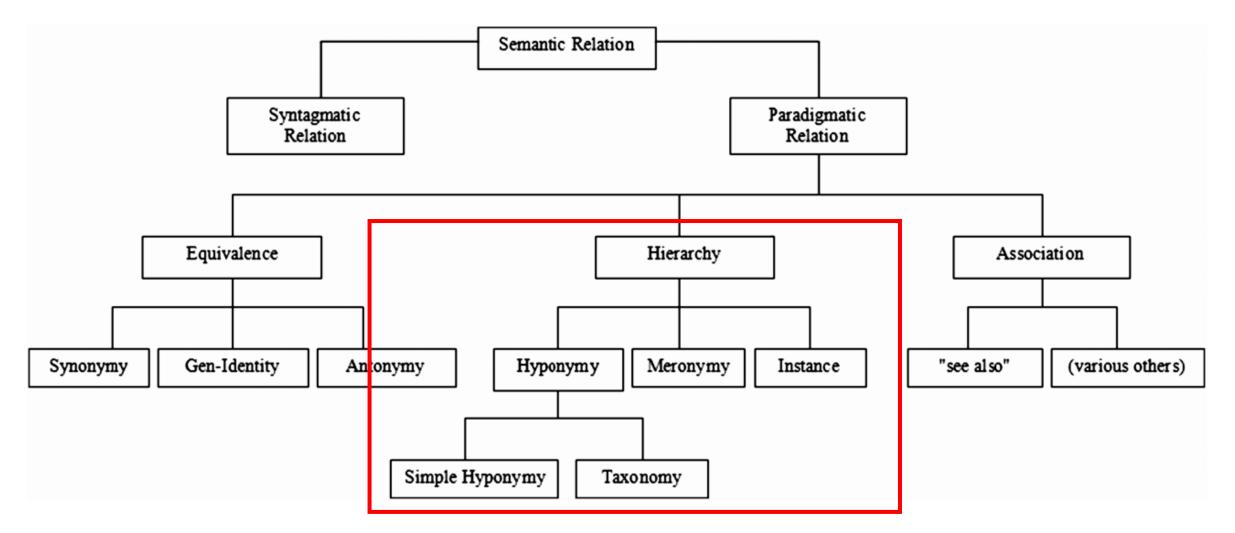
Research Questions

- 1. Which *rule* can effectively capture the hierarchical relations between social tags?
 - Not systematically discussed in previous studies, although some approaches were proposed & evaluated (Garcia-Silva, 2012; Strohmaier *et al.*, 2012).
 - - (Information science & Linguistics) definition of hierarchical relations
 - - Rules in the previous study
 - - Proposed two new rules: Fuzzy set inclusion, Probabilistic Association

Research Questions (2)

- 2. How do *rules* and *data representations* affect the quality of the induced hierarchies?
 - Data representation: resource-based representation, probabilistic topic representation
 - Experimental Design:
 - Hierarchical Generation Algorithm
 - Automated evaluation against three gold-standard hierarchies

Hierarchical Relations – information science



Acknowledgement to the image in Stock, W. G. (2010). Concepts and semantic relations in information science. *Journal of the Association for Information Science and Technology*, *61*(10), 1951-1969.

Hierarchical Relations

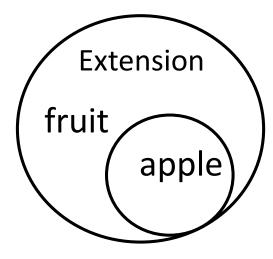
- Straightforward?
 - (i) Apple *is a [kind of]* fruit. (ii) Library science *is a part of* Information Science.
- Abstraction, Generalisation.
- A type of paradigmatic Relation: fit into the same grammatical slot (Cruse, 2003).
- Tagging data only provide syntagmatic relations, but are a great source for paradigmatic relations (Peters, 2009; Stock, 2010).

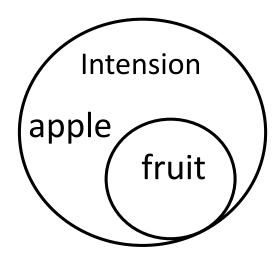
Hierarchical Relations – linguistics (1)

Definitions in Cruse (2003)

- Logical: (extensional) X is a hyponym of Y iff the extension/objects of X' should be included in the extension/objects of Y'.
 - Unsymmetrical

(intensional) X is a hyponym of Y **iff** F(X) entails, but is not entailed by F(Y), where F(-) is a sentential function satisfied by X or Y.





Hierarchical Relations – linguistics (2)

Definitions in Cruse (2003)

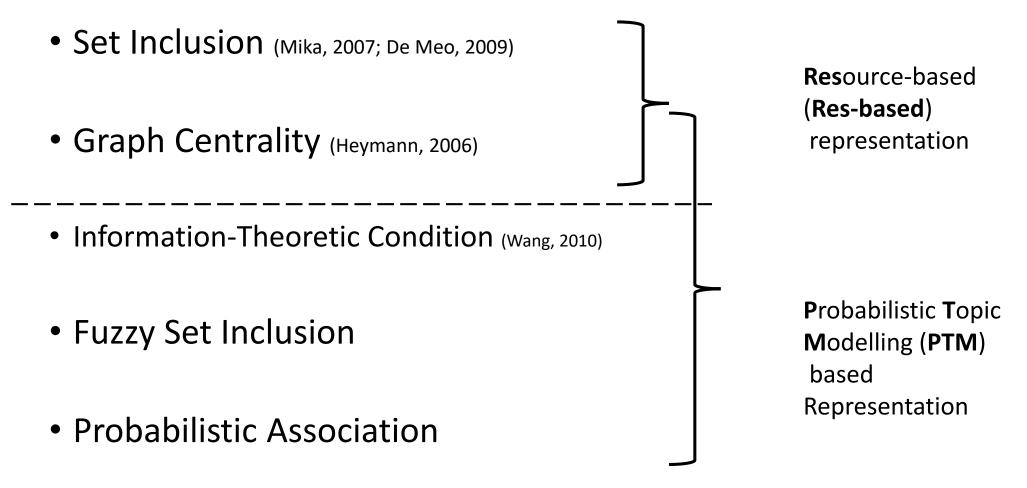
• **Collocational**: X is a hyponym of Y iff the normal context of X is a subset of the normal context of Y.

You shall know a word by the company it keeps... - Firth (1957)

• **Componential**: X is a hyponym of Y iff the features defining Y are a proper subset of features defining X.

Hierarchical relations from tags – computational rules

Representing a tag as a vector



Data Representation

(Markines et al., 2009)

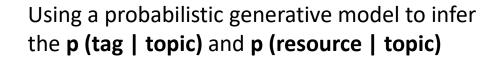
Vt[*i*] = number of times the tag t is annotated to the *i*th resource

	ſ	new
tags		Web
		knov

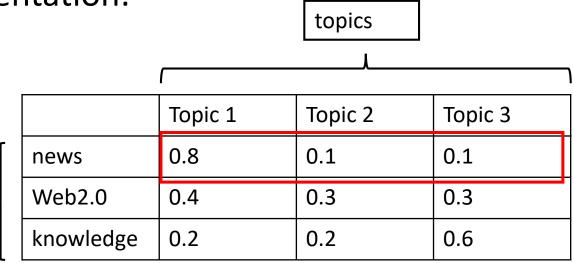
tags

R2 R1 **R3** 1 0 0 'S 0.2c 1 1 1 0 wledge 0 1

• Probabilistic Topic Modelling Representation:



Then calculate p(topic | tag) from p (tag | topic) using Bayesian's Theorem.



Each row sums to 1.

resources

Rule 1: Set inclusion (Mika, 2007; De Meo, 2009)

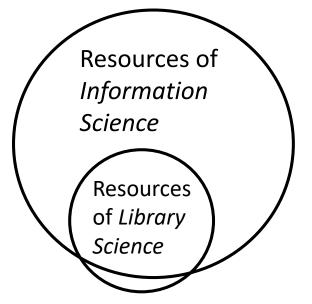
Tag A is a hyponym of Tag B if set-inc(A, B) >= p ∧ set-inc(B, A) s. (p=0.5)

Sim(A, B) is a similarity measure: cosine similarity.

set-inc
$$(A, B) = \frac{|R_A \cap R_B|}{|R_A|},$$

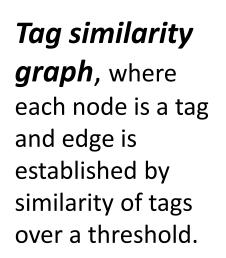
where *R*_A means the resource set annotated using the tag A.

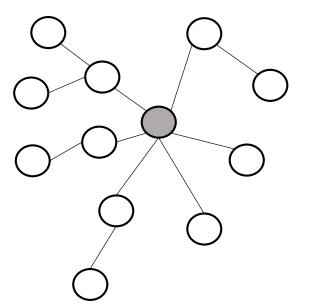
Assumption: The **logical** <u>extension</u> of a tag is measured as its resource context, i.e. the resources that tag is annotated.



Rule 2: Graph Centrality (Heymann, 2006)

Tag A is a hyponym of Tag B if graph-cent(A) < graph-cent(B) ∧ sim(A,B) > s.





graph-cent(A) is a graph centrality measure (centrality, betweenness, etc.) of a tag A in the tag similarity graph.

Assumption: **popularity-generality** the more popular/influential a tag, the more general it is. (**collocational**)

Rule 3: Information-Theoretic Condition (Wang, 2010)

- Tag A is a hyponym of Tag B if DкL(PB||PA)-DKL(PA||PB) < f ∧ sim(A,B) > S. Here PA and PB are the probability distributions of A and B over topics. f is a noise factor of a small value (f = 0.05 in this study).
- Kullback-Leibler divergence as a measure of "surprise" of receiving PB when PA is expected.

$$D_{\mathrm{KL}}(P_A||P_B) = \sum_i P_{A_i} \log \frac{P_{A_i}}{P_{B_i}},$$

Rule 4: Fuzzy set inclusion

- An extension of Set Inclusion, based on probabilistic topic representation:
- Tag A is a hyponym of tag B if fuzzy-set-inc(SA,SB) >= p ∧ fuzzy-set-inc(SB,SA) s, where p is set as 0.5.

fuzzy-set-inc
$$(S_A, S_B) = \frac{\sum_i \min(S_{A_i}, S_{B_i})}{\sum_i S_{B_i}}$$

, where SA is a fuzzy set for tag A as a pair (U, m), U is the set of topics for tag and m:U \rightarrow [0, 1] is a membership function: for each topic $z \in U$, m(z) = p(A/z).

Set inclusion vs Fuzzy set inclusion

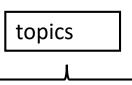
• Resource-based Representation:

Vt[i] = number of times the tag t is annotated to the *i*th resource

n:			R1	R2	R3
	ſ	news	1	0	0
tags -		Web2.0	1	1	1
		knowledge	0	0	1

• Probabilistic Topic Modelling Representation:

tags



Using a probabilistic generative model to infer the **p (topic | tag)** and **p (resource | topic)**

Use p (topic | tag)

Note: this is different from the previous p (tag | topic)

		Topic 1		Topic 2		Topic 3
ſ	news	0.57		0.17		0.1
	Web2.0	0.29		0.5		0.3
	knowledge	0.14		0.33		0.6

Each column sums to 1.

Rule 5: Probabilistic Association

- Based on PTM representation
- Tag A is a hyponym of Tag B if p(A|B) < p(B|A) ∧ sim(A, B) > s,

 $\sum_{z} p(A|z)p(z|B)$, where $p(z|B) \propto p(B|z)p(z)$.

• p(A|B) =

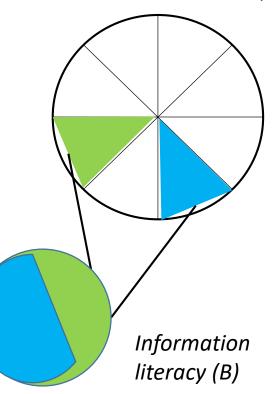
(Griffith & Steyvers, 2002)

• *z* is a member in the set of topics.

• Assumption: componential measure of hierarchical relation.

An example p (A | B) = 1 p (B | A) = 0.25

Information science (A)



Methodology: Algorithm to Hierarchy Generation

Algorithm 1. Hierarchy generation algorithm using any rules.

Input: $L_{PairSim}$ is a pre-computed list of tag pairs $\langle t_i, t_j \rangle$ ranked in descending order by similarity. s is a similarity threshold for a tag pair. $sim(t_i, t_j)$ computes the cosine similarity between t_i and t_j ; hasParent(t, G) returns a boolean indicating whether tag t has a parent node in G; $isHypo(t_i, t_j)$ determines whether t_i is a hyponym of t_j .

Output: G, an induced hierarchy as a directed graph.

2 for
$$i \leftarrow 1$$
 to $|L_{PairSim}|$ do
3 $| < t_i, t_j > \leftarrow L_{PairSim}[i];$
4 if $sim(t_i, t_j) < s$ then
5 | continue to the next $i;$
6 end
7 if NOT hasParent(t_i, G) then
8 | if $isHypo(t_i, t_j)$ then
9 | $G \leftarrow G \cup < t_i, t_j >;$
10 | end
11 end
12 end

- For RQ1 about rules: Replacing the isHypo() function to one of the five rules each time, and compare the results.
- For RQ2 about data representations:
 - using different representation to calculate sim(t*i*,t*j*).
 - using the compatible data representation for each rule.

Experiments

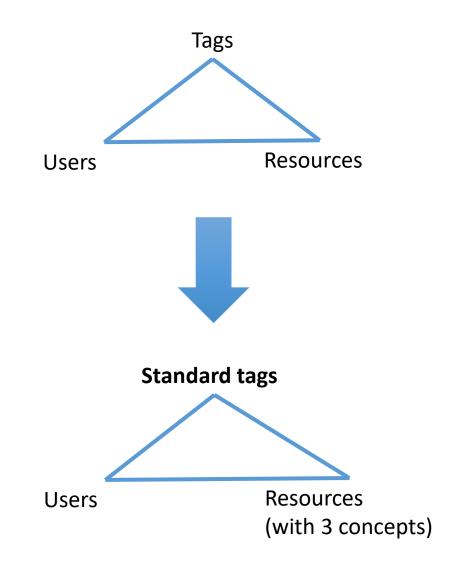
• Data Collection and Processing

Bibsonomy dataset 2003-2015: 3,794,882 annotations, 868,015 resources, 283,858 tags, 11,103 users.

We used a streamline to clean academic social tagging data (Dong, Wang & Coenen, 2017):

- Unified different variants of tags.
- Selected tags having user frequency >= 4.
- Removed resources with tags < 3

The cleaned dataset contains 7,846 tag concepts and 128,782 resources.



Reference-based evaluation

is skos:bro Measuring the similarity of a

learned hierarchy, L, to goldstandard hierarchies.

- Gold-standard, denoted as G:
 - DBpedia (6616 concepts overlap)
 - Microsoft Concept Graph (6029) concepts overlap)
 - ACM computing classification system (691 concepts overlap)

Acknowledgment to Images in

http://dbpedia.org/page/Category:Information retrieval and https://dl.acm.org/ccs/ccs.cfm?id=10003317&lid=0.10002951.1 0003317

 $CCS \rightarrow$

Retrieval

Search engine

architectures and

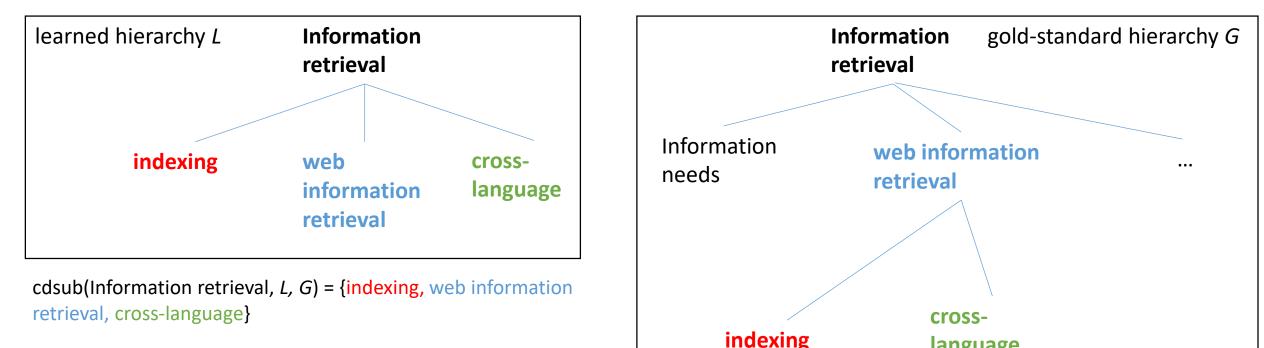
scalability

skos:broader of	 dbc:Directories 	 dbc:Directories 		
	dbc:Internet_search			
	 dbc:Data_management 			
	 dbc:Electronic_docume 			
	 dbc:Information_retrieval_systems 			
	 dbc:Knowledge_ 	representation		
$CCS \rightarrow Information system$	tems -> Information retriev	val		
Document representation	Information retrieval query processing	Users and interactive retrieval		
trieval models and ranking	Retrieval tasks and goals	Evaluation of retrieval results		

Specialized information retrieval

Evaluation metrics (Dellschaft, Staab, 2006)

- Find *common concepts* between the learned hierarchy *L* and the gold-standard hierarchy *G*, (i)
- (ii) Extract a *characteristic excerpt* for each concept. We use *common direct subsumption* (cdsub) as the characteristic excerpt.
- The similarity of hierarchies is defined based on the characteristic excerpts. (iii)



language

 $cdsub(Information retrieval, G, L) = \{web information retrieval\}$

- Taxonomic Precision (TP), Taxonomic Recall (TR) and Taxonomic F-measure (TF)
- *Taxonomic* Overlap (*TO*)
- Taxonomic F'-measure (TF')

$$tp_{cdsub}(c,L,G) = \frac{|cdsub(c,L,G) \cap cdsub(c,G,L)|}{|cdsub(c,L,G)|}$$
(1)

$$TP(L,G) = \frac{1}{|L \cap G|} \sum_{c \in L \cap G} tp_{cdsub}(c,L,G)$$
(2)

$$to_{cdsub}(c,L,G) = \frac{|cdsub(c,L,G) \cap cdsub(c,G,L)|}{|cdsub(c,L,G)| \cup cdsub(c,G,L)|}$$
(3)

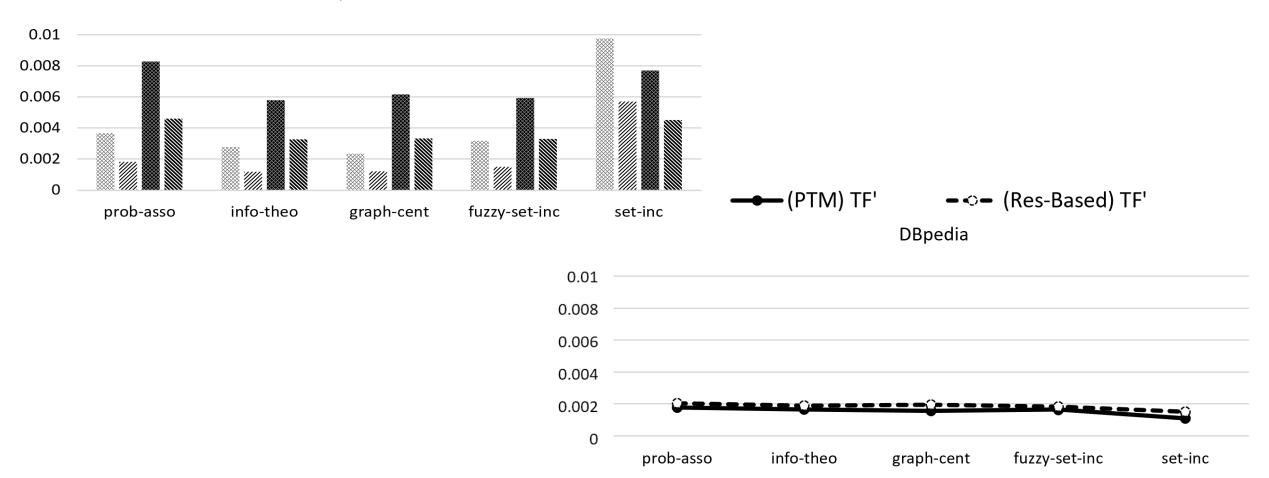
$$TO(L,G) = \frac{1}{|L \cap G|} \sum_{c \in L \cap G} to_{cdsub}(c,L,G)$$
(4)

$$TR(L,G) = TP(G,L)$$
$$TF(L,G) = \frac{TP(L,G) * TR(L,G)}{TP(L,G) + TR(L,G)}$$
(5)

Results - DBpedia

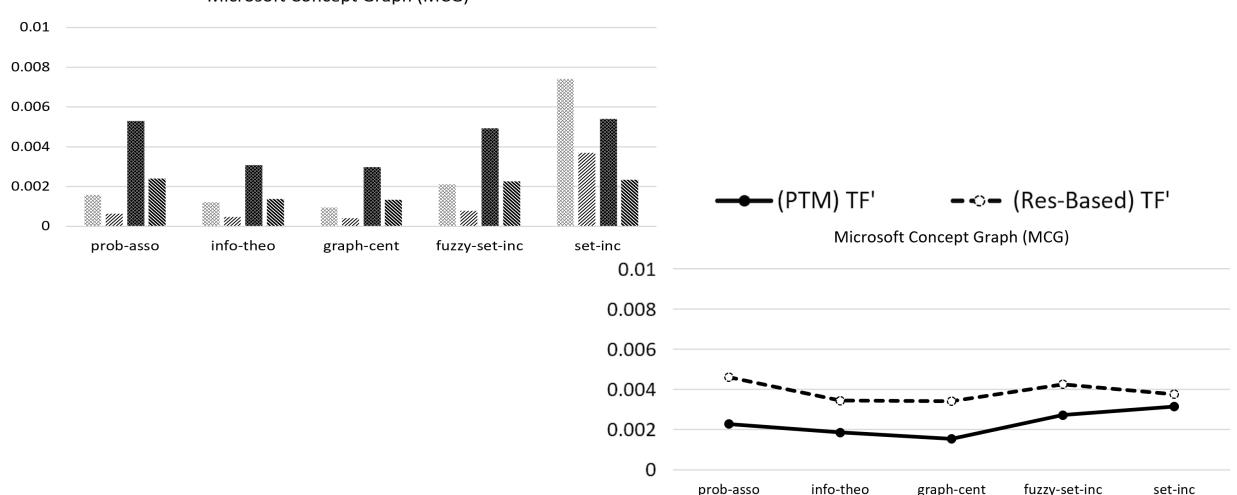
(PTM) TF (PTM) TO (Res-Based) TF (Res-Based) TO

DBpedia



Results – Microsoft Concept Graph

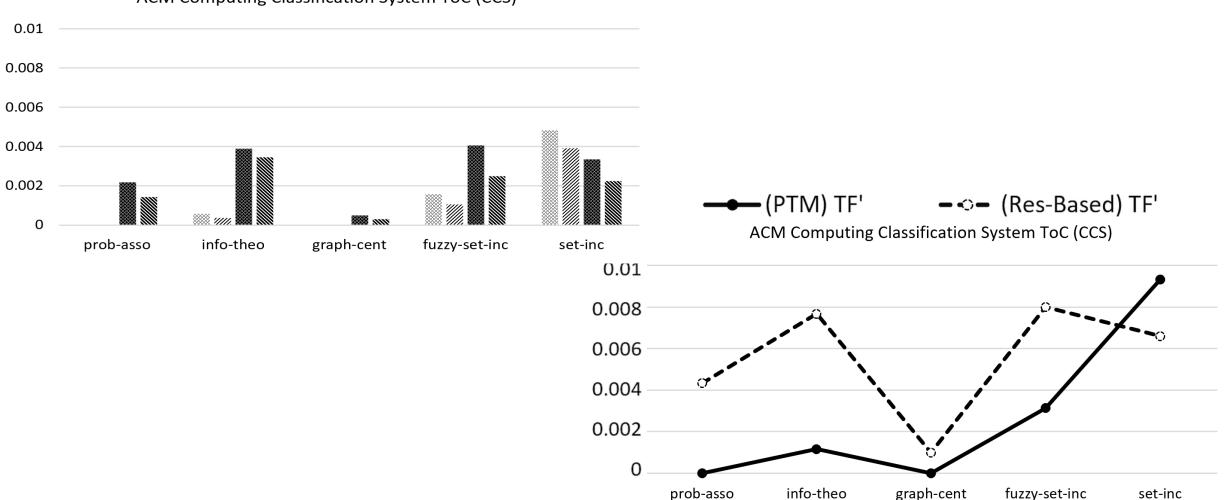
(PTM) TF (PTM) TO (Res-Based) TF (Res-Based) TO



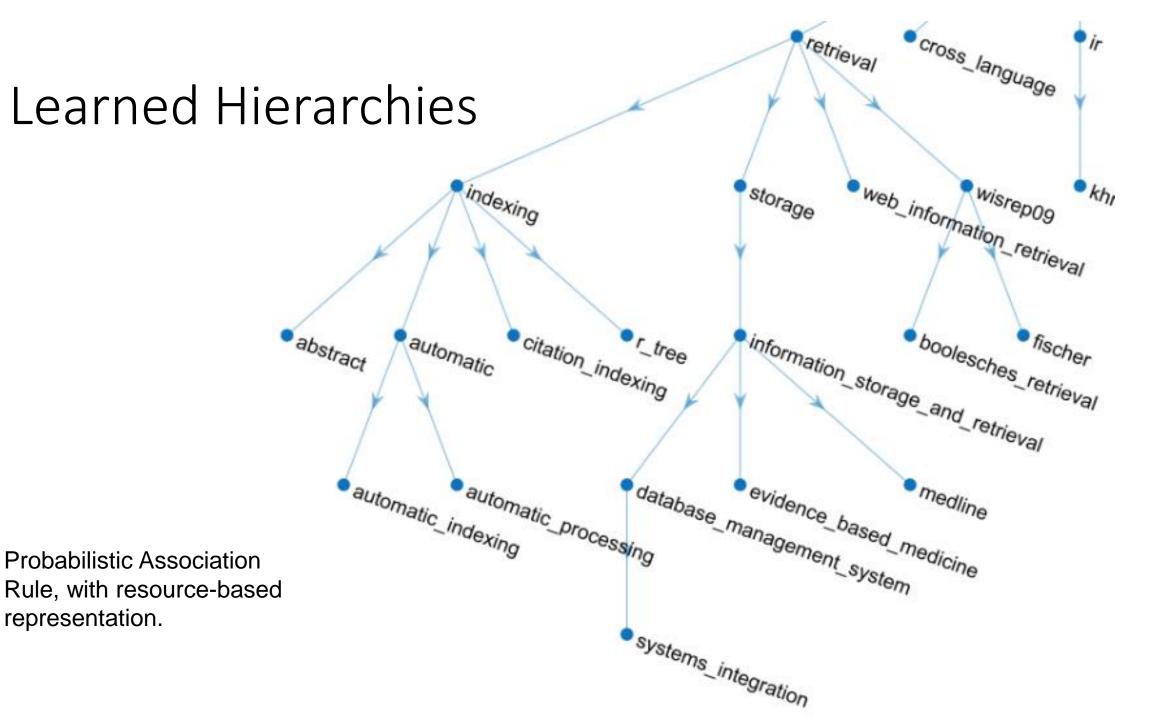
Microsoft Concept Graph (MCG)

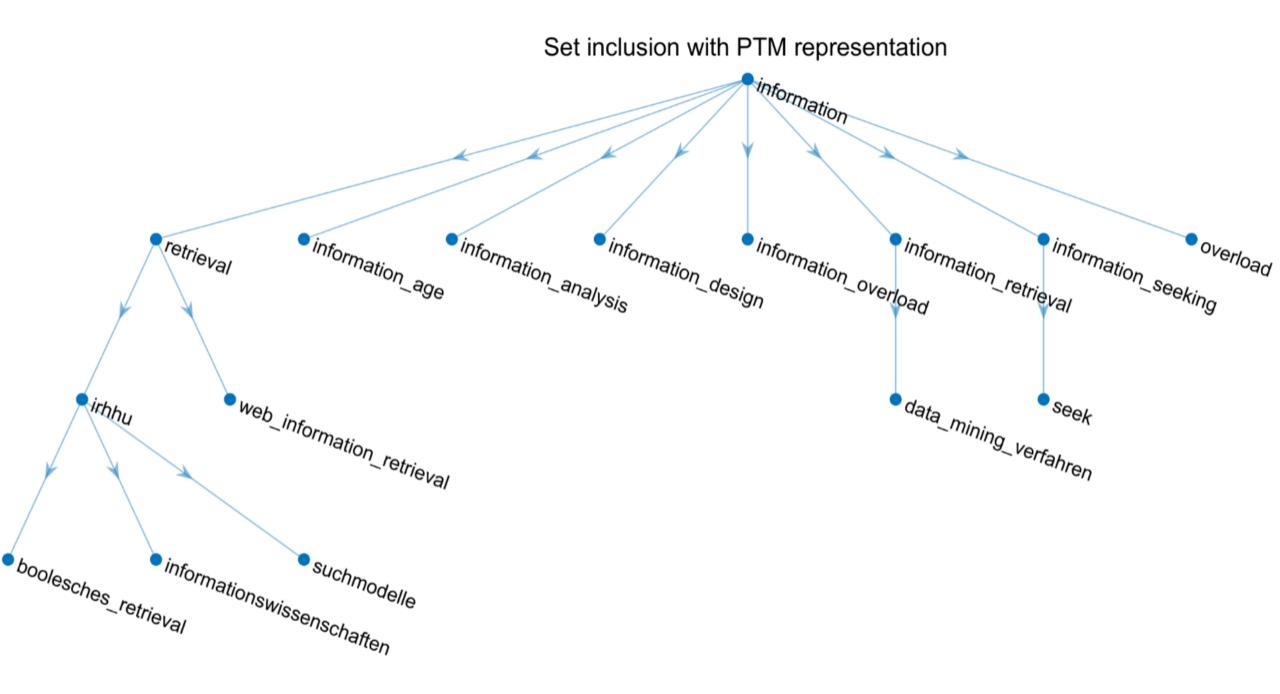
Results – ACM Computing Classification System

(PTM) TF (PTM) TO (Res-Based) TF (Res-Based) TO

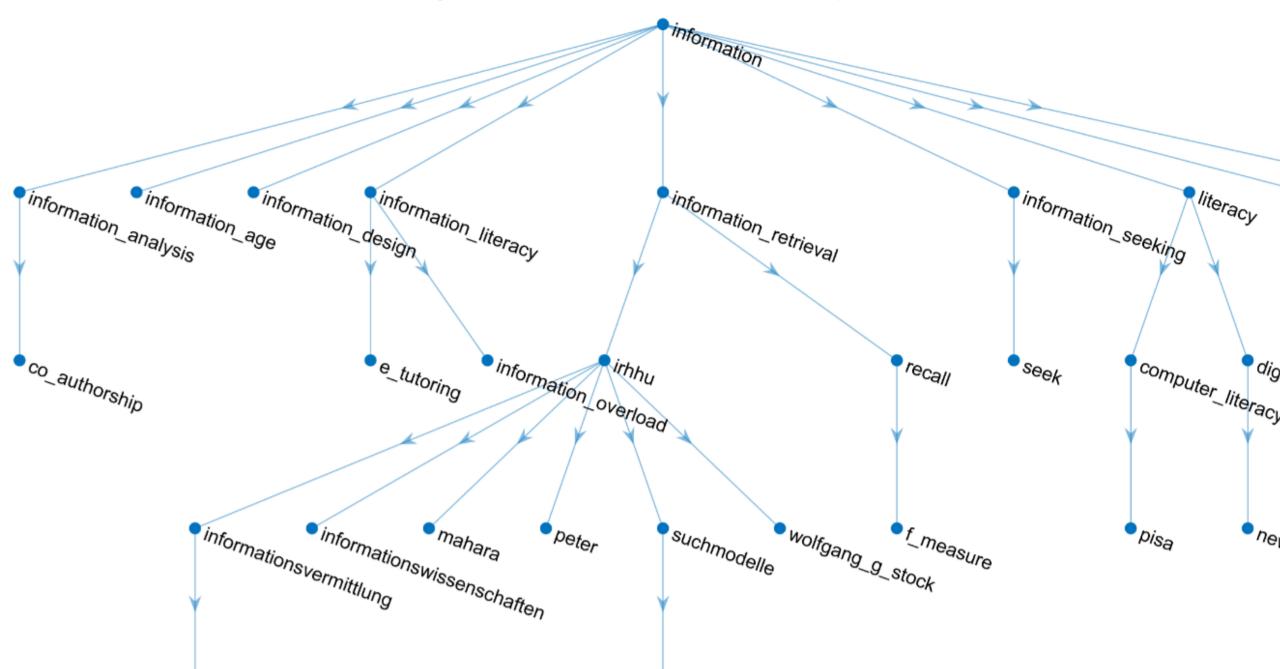


ACM Computing Classification System ToC (CCS)





Fuzzy set inclusion with resource-based representation



Discussions

- Q1: regarding the rules
 - Set Inclusion Rule results overall best & stable hierarchies in most experimental settings.
 - Fuzzy Set Inclusion and Probabilistic Association rules have competitive results.
- Q2: regarding the data representation techniques
 - The Res-based representation performs best in most experimental settings.
 - Except the PTM representation with Set Inclusion rule had overall best results (TF and TF').
- Issue:
 - Not consistent among three gold-standard hierarchies, demonstration the distinction of the nature of the chosen gold-standard hierarchies.

Future Studies

- Evaluation: Not just automated evaluation.
- Higher quality hierarchies through machine learning:
 - Use the rules altogether to induce hierarchies: features in supervised learning
 - Add further information/context: resource contents, external lexical resources, transfer learning, etc.
- Use deep learning approaches:
 - Forget about the rules?
 - Using very rich data representations: word embedding

References

- Benz, D., Hotho, A., Stumme, G., Stutzer, S.: Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference (WebSci10) (2010)
- Cruse, D.A.: Hyponymy and its varieties. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships: An Interdisciplinary Perspective, pp. 3–21. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0073-3 1
- Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078 17
- Dong, H., Wang, W., Frans, C.: Deriving dynamic knowledge from academic social tagging data: a novel research direction. In: iConference 2017 Proceedings (2017)
- Griffiths, T.L., Steyvers, M.: Prediction and semantic association. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, pp. 11–18. MIT Press (2002)
- Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, Stanford University (2006)
- Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., & Stumme, G. Evaluating similarity measures for emergent semantics of social tagging. In Proceedings of the 18th international conference on World wide web, 641-650. ACM (2009, April).
- Meo, P. D., Quattrone, G., Ursino, D.: Exploitation of semantic relationships and hierarchical data structures to support a user in his annotation and browsing activities in folksonomies. Inf. Syst. 34(6), 511–535 (2009)
- Mika, P.: Ontologies are us: a unified model of social networks and semantics. Web Semant.: Sci. Serv. Agents World Wide Web 5(1), 5–15 (2007)
- Peters, I., Becker, P.: Folksonomies: Indexing and Retrieval in Web 2.0. De Gruyter/Saur, Berlin (2009)
- Strohmaier, M., Helic, D., Benz, D., Korner, C., Kern, R.: Evaluation of folksonomy induction algorithms. ACM Trans. Intell. Syst. Technol. 3(4), 1–22 (2012)
- Vander Wal: Folksonomy Coinage and Definition. <u>http://www.vanderwal.net/folksonomy.html</u> (2007)
- Wang, W., Barnaghi, P.M., Bargiela, A.: Probabilistic topic models for learning terminological ontologies. IEEE Trans. Knowl. Data Eng. 22(7), 1028–1040 (2010)
- Weller, K.: Knowledge Representation in the Social Semantic Web. De Gruyter Saur, Berlin/New York (2010).

Thank you for your attention.

Hang Dong's Home page: <u>http://cgi.csc.liv.ac.uk/~hang/</u> Contact: <u>hangdong@liverpool.ac.uk</u>